The Metric Dimension of Two-Dimensional Extended Meshes
نویسندگان
چکیده
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملAn algorithm for the weighted metric dimension of two-dimensional grids
A two-dimensional grid consists of vertices of the form (i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n, for fixed m,n ≥ 2. Two vertices are adjacent if the l1 distance between their vectors is equal to 1. A landmark set is a subset of vertices L ⊆ V , such that for any distinct pair of vertices u, v ∈ V , there exists a vertex of L whose distances to u and v are not equal. We design an efficient algorithm ...
متن کاملGraphs with Metric Dimension Two-A Characterization
In this paper, we define distance partition of vertex set of a graph G with reference to a vertex in it and with the help of the same, a graph with metric dimension two (i.e. 2 ) ( = G β ) is characterized. In the process, we develop a polynomial time algorithm that verifies if the metric dimension of a given graph G is two. The same algorithm explores all metric bases of graph G whenever 2 ) (...
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملAdjacency metric dimension of the 2-absorbing ideals graph
Let Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Cybernetica
سال: 2018
ISSN: 0324-721X
DOI: 10.14232/actacyb.23.3.2018.2